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these advantages. Basic techniques such as threghad
Hough transform [8] have been used for segmentation as well

Abstract— Automatically tracking cells in large time lapse as more advanced.r.nethods as for instanpe multifractal. [4].[6]
datasets is necessary for analyzing cell motion and behavior in and pattern recogpltlon [7]. A ”e“.“?" algorithm was ap.plledlln
order to develop new diagnostics and therapeutics. Algorithms [2] to deal with noisy cells. In addition, a genetic algorithm in
combining a frame-by-frame segmentation and a model-based [6] improves the separation quality of the segmentation.
method have been developed [1][2] to track the cells across a We propose an algorithm that combines the tracking by
sequence of images. The proposed method is based on thidetection and tracking by model-evolution approaches. In our
approach, combining a frame-by-frame method (cell detector and technique, the tracking by model-evolution uses the ASM to
arbitrator) and a model-based method using the Active Shape match the cells over the sequence. Moreover, an arbitrator and
Model (ASM). As far as the obtained results are concemed, we 5 cg|| detector allow us to deal with the cells entering and
developed a robust cell tracking allgorllthm that can track the cells leaving the field of view and to manage the lost tracks.

across a sequence of cell population images. . : :

The solution proposed in this paper has revealed good
results with regards to the efficiency and robustness of the cell
detection and tracking. 89% of the cells are accurately
detected by the cell detector and 92.1% of the detected cells
are tracked between two consecutive frames. This automated
analysis enhances the cell population movement that can be
I. INTRODUCTION used in order to analyze the behavior of the cells, their
(Proliferation or their health.

Index Terms— image processing, cell tracking, Active Shape
model

Tracking of cell populations provides important an

relevant information on the cell behaviors that can be used Wr
a significant amount of applications in genomics, proteomics,
stem cell biology and tissue engineering. Cell analyses areEXisting cell tracking techniques are essentially classified
used to develop new diagnostics and therapeutics by analyzif§p two approaches: tracking-by-detection and tracking by
their behavior and reaction in different environments. The dafg°del-evolution, each entailing specific advantages and
load of cell image sequences available for analysis is téésadvantages.
important to be analyzed manually. Automated cell tracking The tracking-by-detection is processed in two independent
algorithms are therefore essential in order to substitute th®ges: a segmentation is processed on all the images using
manual marking of cells across a sequence of images. Sevéggsholding, gradient, Hough transform [8], multifractal [4]
issues occur in the cell tracking process, such as the mitd&§ikor pattern recognition [7] in the first stage.
(division of a cell into two new cells), the apoptosis (celln the second stage, an inter-frame data association is
death), the cells entering and leaving the field of view of tHrocessed in order to match the cells frame after frame. The
camera, the change of cell shapes, the increasing dens@gmentation in each frame can be independent from the other
during expansion and the overlapping cells. frames, making it possible to deal with mitosis and cells

The main traditional methods developed in prior works a@ntering and leaving the field of view.
classified in two principal processes: tracking by detection andThe tracking by model-evolution approach consists of
tracking by model-evolution [1][2]. The tracking by detectiorfreating a mathematical appearance or shape model and of
method operates a frame-by-frame segmentation followed gptimizing its parameters in order to match the cells across the
an inter-frame matching whereas the tracking by mod&gduence. Typical models used for cell tracking are Active
evolution utilizes a mathematical model that fits the cells arfgontour Models (ACM or “snakes) [9], ASM or Mean-shift
that evolves overtime to follow the changes of location arld0]. Unlike the tracking by detection method, this kind of
shape. Both techniques entail advantage. The first appro@iProach does not require an inter-frame object pairing. Thus,
enables the detection of the mitosis and of the cells enterifig@llows the cell tracking to deal with dull edges and
and leaving the field of view whereas the second can deal wR4erlapping issues.

dull edges. K. Li et al. [1] present a technique that combin&gVveral researches have been conducted in order to combine
the advantages of these two methods. K. Li et al. [1] present

such an approach including modules designed in two levels: a
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cell detector and a track arbitrator. However, gakition also
shows limitations regarding the spatiotemporal rimfation
that is lost by processing in a frame-by-frame neann
Neural classifiers have also been applied to detil noisy
images, whose results have revealed an efficiarhieg of
classification in the case of blurred and non-stealp shapes
[5]. In [6], an optimization of the segmentationdsveloped
using a genetic algorithm. More information on grir work
may be found in [11].

l1l.  CELL TRACKING ALGORITHM DESCRIPTION

Our algorithm is composed of two main parts: treéning
program and the tracking program. While the firattps run
once in order to save the possible shapes of the (@M
space), the tracking program is run on a new sexguefan
image, performing the cell detection and trackifibe ASM
search is the principal element of our approachianttrived
from the ASM shared code in [3]. The second elenteat
supplements the ASM search is an inter-frame madcbf the
cell contour.

A. Training process

The training process is required in order to sdne ASM
space which represents the possible variationshef dell
shapes as well as to create an appearance motialefirees
constraints for the ASM fitting optimization. Toishend, a
training set composed of 80 cell contour shapeshaee been
manually marked is created. The main code of thmitrg
process is available at [12].

At the first step, the possible shapes and the mkape are
learned and saved. To this end, the rotations
translations are removed from the cell contourir(ing set).
The Principal Component Analysis (PCA) is consegjyen
used to determine the most important and uncoeelat
eigenvectors and eigenvalues of the training sbe PCA
uses the Single Value Decomposition to find theeiglues
and eigenvectors. At last, the shape space is sdved
composed of the eigenvectors and the eigenvalued) b
describing the possible shapes of the cells, at agebf the
mean training shape.

aed t

eigenvalues, mean and covariance matrix are subsdyu
saved for each scale.
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Fig. 1. Mean intensity pixel profile of the lines perpendar to the contou
and passing through the contour points. Each o8theurvesorresponds to
contour that has been manually marked

B. Cell tracking process

Once the training process has been run for theoppipte
type of cell images, the cell tracking system carpbocessed
on a new sequence of cell images. Our trackingrittgo is
essentially composed of a cell detector, a cetlkeka and an
arbitrator. The main code of the cell tracking aidon is
available at [13].

The cell detector locates the cell contours onraage of
the sequence using the ASM fitting. The initialiaat of the
ASM is based on simple binary operations and dmreshold
applied on the input image, which calculates théeiimal
centers of the cells. An example of this initialiaa may be
found in [14]. The initial shape of the ASM is thean shape
of the training data that is loaded at the begigniri the

Secondly, an appearance model is created and saved’Todram. As mentioned in the previous part, the Afithg

order to optimize the ASM fitting. For each contailne image
is therefore sampled on lines perpendicular tig. 1 shows
the mean intensity profile of these lines for eaohtour. We
can observe the higher intensity at the contountpaihich
lies on the ¥ point of the x-Axis for each contour. This
constant particularity of its perpendicular linesl e used in
order to find the best fit for the ASM search. Tim&rmation
is saved in two ways in order to have two possiedifor the
ASM fitting optimization.
Mahalanobis distance. The covariance matrix ofddwévative
of the intensity profile is thus saved to enablis tineasure.
The second method uses the PCA on the intensitfilgoro
Therefore, the eigenvectors, eigenvalues and mdatheo
intensity profile are saved. This process is appiog different
scales of the image in order to refine the optitdraof the
ASM fitting. The intensity profile are calculatedn othe
original image and on rescaled images. The eigaorsgc

The first method uses the

can be optimized in two ways: by minimizing the M&mnobis
distance or by calculating the PCA parameters. Sdach of
the best ASM fitting is applied on different scalek the
image.

The cell detector is applied to all the cells df fhist image of
the sequence as well as on the cells of the faligwinages
that have not been tracked (see figure 1).

In the first case, the cell detector detects aldhlls of the
first image in order to start the tracking.

In the case of the latter, this is used in ordedetect cells
that have not been tracked from a previous imaggeding
cells that have not been followed from a previowmie
present two advantages. First, we seek to matcle roelis
using an inter-frame cell matching based on thesgitjpns and
shapes. Cells whose tracks have been lost fronpriéndous
image are therefore followed again. Second, theotied cells
are used in addition to the previously trackedscfdl the cell
tracker initialization on the next frame. Cellsaitg the field



of view or cells which were not previously detectedd In the last module, a cell contour that contains same
tracked can therefore be managed by the trackisigisy center as another contour is deleted as well. Thigrator is
applied after the cell detector and the cell tra¢key. 2).

The cell tracker applies the same ASM search asétie
detector, yet its shape and position initializati@me based on In the end, another module that is not represeoeBig. 2
the positions and shapes of the cells detectechoked on the for the purpose of a clearer representation is disetewly
previous image. It is run on all the frames of #emuence matching the cells that have neither been trackedmatched
except for the first frame since no previous iti&ion is on two previous frames. Some cell contours fromftame (i-
available (Fig. 2). A cell is considered followed “tracked” 2) may not be on the frame (i-1). This module siympl
between two consecutive frames if the ASM searitaiized compares these contours to the cell contours offrdinee (i).
by the previous cell contour fits the cell on thhegent frame The cell tracking is therefore more persistenthastrack of a
again. We assumed and verified that the changesllo$hapes cell that is lost on a frame can be recovered latethe
between two consecutive frames were slight enough $equence.
consider that the ASM search would fit the contofirthe
same cell as on the previous image. For each image, the centers of the cells are saseuell as

numbers specifying which cells have been succdgsful

The track arbitrator block specifies whether the MAS tracked from the previous image. At the end ofahelysis of
results (cell contours) are consistent or not. Toatours the sequence, all the information on the motiorthef cells
which are considered as not consistent by theratbit are that have been detected by the system has beesrgdtror a
removed from the detected or tracked cell contmets In clear result, we only show the motion of the céfiat have
order to do so, different modules analyze the @atitours and been tracked across the whole sequence.

the image.
First, those cell contours fitted by the ASM seanshich
partly lie outside the field of view, are removed. IV. CELL TRACKING RESULTS

Based on the gradient values of the image, andimaryb
operations, a mask is created in the second stepnagto
describe the areas of the image that cannot comtacell.
Those areas indeed possess a low pixel variatiah a8 dataset were acquired in a similar manner and gbnfes

the'refore easily ex}rac';able. In the arbitratoe, ¢lell contours explained previously, two optimizations are avaiafor the
which have a part in this mask area are removed. ASM fitting. The PCA method has shown much betésuits
than the Mahalanobis distance minimization. Theéofaing
results are therefore obtained by using this metikog. 3
shows the ASM search of the cell detector on dsicgl.

Our program was run on four sequences of 100 frames
each. The training ASM space was saved once ardl fase
the four sequences as the cell images in large-lapse

frame 1
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Fig. 3 Example of ASM search of the cell detector (ajidhASM positior
and shapeThe shape is the mean shape of the training @@t®ASM fittec
to the cell contour

Fig. 2.Structure of the cell tracking algorithresulting in the cell motic
information

The third module tests the centers of the cellsl dse the
initialization of the cell detector. Cell contowrsntaining zero
or more than one of these centers are removed.

@ (b)
Fig. 4.Example of ASM search showing the detectibrall the cells on &
image (a) before the Arbitrator (c) After the Arhibr



The process of the arbitrator module is shown gn &i We
see that the cell contours that are considered¢omdistent as
explained in the previous part are removed by ttérator
such as those contours lie outside the field ofvvie

Fig. 5 Example of ASM search of the cell detector (apdydetection, (t
imprecise detection, (c) wrong detection

The cell detector has been tested on twelve cedigas
(three from each sequence). We have manually detednthe
number of cells on each image and analyzed the A&t
(cell detector).

An average of 137.7 cells has been manually foundazh
image. After the arbitrator correction, 94.2% oégsh cells
have been matched by the cell detector, 2.72% exfetitells
were wrong, 8.52% of the actual cells were theeefoissed
on average and 4% were “not accurate”. Eventua8y6% of
the cells were precisely detected on average om feame. A
shape is considered wrong if it does not fit a cetitour or if
it fits two cell contours. A shape is termed “notarate” if we
clearly see that it does not precisely fit a celtour (see Fig.

Fig. 6. Result of the cell motion over a sequerfcéa) 20 frames, (b) ¢
frames, (c) 100 frames

Tested on twenty cell images (5 from each sequetie)
percentage of cells tracked by the cell trackdteraorrection
by the arbitrator - was 89.3% without the modulet trecovers
the track of the lost cells. It was 90.42% withstimodule
dealing with the lost cells from one frame to thter and
92.1% when using the module, which deals with tbst |
tracks from frame (i-2) to frame (i). The trackeallic
percentage only represents those cells detectetthebASM
search; it does not represent the real percentdigeelts
tracked on the image.

Eventually, Fig. 6 shows the track (black marks)todse
cells that have been followed from the first imageil the end
of the sequences composed of 20, 50 and 100 frames.
However, more material is saved for analysis as tladl
information about the tracked cells is saved.
The final result therefore presents a table of amsctthat
contain all the centers of the cells detected eysystem for
each frame as well as a vectors specifying whidls ¢eave
been followed on two consecutive frames.

Further results and tests may be found in [14]oAgiother
things, the ASM optimization is tested for differerumber of
scales.

V. ANALYSIS
A. Robustness and precision of the tracking

As outlined in the previous part, we developedtaust cell
tracking algorithm. The detection and tracking loé tells is
more robust for the cells that present a simpleleishape
entailing a medium or big size. As we can see gn@ionly a
few cells are tracked from the first image untié tbnd of the
sequence. This is due to the fact that some @il the field
of view, others may die (apoptosis) or separateois) and
cause a lost track. Some cells may simply not tbedfiby the
ASM because of their shapes, causing further |omtks.
Those explain the few track traces on Fig. 6 (48¢s over 20
frames, 18 traces over 50 frames and 7 traces bO6r
frames). However, more information can be extraéteah the
analysis. The result of the algorithm analysis @dleontains
all the cell centers that have been detected ahealfframes of
the sequence with a detection percentage of 90.0DH4op of
that, the cells that are followed on every two cmmsive
frames are further specified. The information cameall cell
movements is therefore saved and available foysisal

The ASM search shows several difficulties on cartgpes
of cell shapes.

First, while the cell detection and tracking arddad more
accurate for cells of medium and large size, sroalls are
harder to fit since the ASM search tends to grod tarfit two
cells instead of a single one. The reason forighibat most of
the shapes are bigger and therefore the mean shajgger,
causing the ASM search to match two small cells tingether
present a shape similar to a single cell shape.

Secondly, the detection of those cells that are not
surrounded by other cells is also less robust asulirate.
Indeed, the ASM search fits to the intersectionveen two



cells more easily than to the intersection between a cell aedable studying the cell population behavior. Further

the background of the image. This is explained by thenprovement on robustness, processing speed and mitosis

optimization of the ASM search that uses the mean intensitgtection may be developed based on this cell tracking

profile of the lines perpendicular to the contours. Most of thelgorithm.

contours being surrounded by other cells, the ASM searches

pixel values that correspond to another cell around the
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